Developmental ability of somatic cell nuclear transferred embryos aggregated at the 8-cell stage or 16- to 32-cell stage in cattle.

نویسندگان

  • Satoshi Akagi
  • Daisuke Yamaguchi
  • Kazutsugu Matsukawa
  • Eiji Mizutani
  • Misa Hosoe
  • Noritaka Adachi
  • Masanori Kubo
  • Seiya Takahashi
چکیده

Aggregation of somatic cell nuclear transfer (SCNT) embryos in mice is reported to improve full-term development. In the present study, we attempted to improve the development of SCNT embryos by aggregation in cattle. In Experiment 1, to examine the effect of the timing of aggregation on in vitro development of cumulus-cell NT embryos, we aggregated two or three SCNT embryos (2X or 3X embryos) at the 1-cell, 8-cell and 16- to 32-cell stages. Irrespective of the timing of aggregation, 3X embryos developed to the blastocyst stage at a high rate. However, aggregation did not improve the total blastocyst formation rate of the embryos used. The cell numbers of 3X embryos aggregated at the 1-cell stage and 2X embryos tended to be higher than that of single NT embryos (1X embryos). Furthermore, a significant increase in cell number was observed in 3X embryos aggregated at the 8-cell stage and 16- to 32-cell stage. In Experiment 2, we used fibroblast cells as nuclear donors and examined in vitro development of 3X embryos aggregated at the 8-cell stage and 16- to 32-cell stage. As a result, 3X embryos had high blastocyst formation rates and higher cell numbers than 1X embryos, which was consistent with the results of Experiment 1. In Experiment 3, we examined the full-term developmental ability of 3X embryos aggregated at the 8-cell stage and 16- to 32-cell stage. After transfer of fibroblast-derived NT embryos into recipient animals, a significantly higher pregnancy rate was obtained on Day 60 in 3X embryos than in 1X embryos. Two embryos aggregated at 8-cell stage and one embryo aggregated at the 16- to 32-cell stage developed to term, while no pregnancies derived from 1X embryos that lasted to Day 60. However, two of the cloned calves were stillborn. These results suggest that aggregation of the 8-cell stage or 16- to 32-cell stage SCNT embryos may improve the pregnancy rate, but that it cannot reduce the high incidence of fetal loss and stillbirth, which is often observed in bovine SCNT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative stepwise pattern of reactive oxygen species production during in vitro development of fertilized and nuclear transferred goat embryos

Objective A unique feature of embryo metabolism is production of reactive oxygen species (ROS). It is well established that during in vitro culture, ROS levels increase over normal ranges observed for embryos developed in vivo. This study evaluates and compares the stepwise pattern of ROS production during in vitro development of reconstructed goat embryos produced by zona-free method of somati...

متن کامل

O-3: Effect of Melatonin Treatment on Developmental Potential of Somatic Cell Nuclear- Transferred Mouse Oocytes In Vitro

Background Melatonin (N-acetyl-5- methoxytryptamine) is mainly synthesized and secreted in the pineal gland, ovary, testes, bone marrow, retina and lens in mammalian species. It is involved in the detoxification of ROS and protects embryos from oxidative damage. Melatonin acts as a potential free radical scavenger, including peroxyl radical and hydroxyl radical. In addition, it can stimulate th...

متن کامل

P-115: Melatonin Increases Developmental Rate of In Vitro Mouse Somatic Cell Nuclear

Background: The beneficial effect of supplementing culture medium with melatonin has been reported during in vitro embryo development of species such as mouse, bovine and porcine. However, the effect of melatonin on the mouse somatic cell nuclear transfer remained unknown. Materials and Methods: In this study, we assessed the effects of various concentrations of melatonin (10-6 to 10-12 M) on t...

متن کامل

O-18: Epigenetic Modification of Cloned Embryo Development; State of ART

Background: At the outset of the somatic cell nuclear transfer (SCNT) process, the chromatin structure of the somatic cell which governs its state of differentiation undergoes dramatic changes, called reprogramming, and is compelled back to the embryonic stage. However, the overall epigenetic makeup of the resultant cloned embryos has been acknowledged far different from the fertilized embryos....

متن کامل

I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline

Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of reproduction and development

دوره 57 4  شماره 

صفحات  -

تاریخ انتشار 2011